Astronomía Esférica

Trabajo Práctico N° 5: Precesión General (Modelo IAU 1976)

1) Fórmulas Rigurosas

- a) Represente sobre la esfera celeste los elementos de la Precesión General que vinculan el sistema ecuatorial medio de la época T con el sistema ecuatorial medio de la época T_0 .
- b) Especifique las rotaciones necesarias para transformar coordenadas ecuatoriales en el sistema medio de la época T_0 al sistema medio de la época T
- c) Construya la matriz de Precesión P y especifique la ecuación matricial de transformación para estudiar la Precesión General.

2) Fórmulas Aproximadas

Asumiendo intervalos cortos de tiempo (esto es, < 1 año) y estrellas con declinaciones no muy elevadas (esto es, $\delta < 80^{\circ}$), determine las Fórmulas Aproximadas para estudiar la Precesión General.

3) Ejercicios de Aplicación

Calcule las coordenadas ecuatoriales celestes corregidas por Precesión General en los siguientes casos. Determine si se utilizan las fórmulas rigurosas o aproximadas y justifique.

- a) Las coordenadas ecuatoriales celestes medias de β Gem en la época J1996.0 son $\alpha=7^h$ 45^m 4.285^s y $\delta=28^\circ$ 2' 9.96". Encuentre sus coordenadas ecuatoriales celestes medias en la época J2000.0.
- b) Las coordenadas ecuatoriales celestes medias de HD90813 en la época J2000.0 son $\alpha = 18^h~31^m~30.016^s$ y $\delta = 45^\circ$ 0' 35.23". Encuentre sus coordenadas ecuatoriales celestes medias en la época J2005.0.
- c) Las coordenadas ecuatoriales celestes medias de γ Boo en la época J1997.0 son $\alpha = 14^h \ 31^m \ 51.434^s$ y $\delta = 38^\circ \ 19' \ 45.34"$. Encuentre sus coordenadas ecuatoriales celestes medias en la época correspondiente al 15 de noviembre de 1997.
- d) Las coordenadas ecuatoriales celestes medias de τ Oct en la época J2000.5

son $\alpha=23^h~28^m~7.3^s$ y $\delta=-87^\circ~28^\circ~46$ ". Encuentre sus coordenadas ecuatoriales celestes medias en la época J2001.0.

- e) Las coordenadas ecuatoriales celestes medias de la estrella polar en la época J1950.0 fueron $\alpha=0^h$ 43^m 43^s y $\delta=87^\circ$ 59' 41.12". Encuentre sus coordenadas ecuatoriales celestes medias en la época J2050.0.
- ${f f}$) Determine las coordenadas ecuatoriales celestes medias del polo norte celeste de J2000.0 en la época J14000.0.

Fórmulas Rigurosas

Expresiones para los ángulos de Newcomb

Las expresiones para los ángulos de Newcomb ζ , z y θ son las siguientes:

$$\zeta = (2306.2181'' + 1.39656''T - 0.000139''T^{2})t + (0.30188'' - 0.000344''T)t^{2} + 0.017998''t^{3}$$

$$z = (2306.2181'' + 1.39656''T - 0.000139''T^{2})t + (1.09468'' + 0.000066''T)t^{2} + 0.018203''t^{3}$$

$$\theta = (2004.3109'' - 0.85330''T - 0.000217''T^{2})t + (-0.42665'' - 0.000217''T)t^{2} - 0.041833''t^{3}$$

donde

$$T = \frac{E_i[a\tilde{n}os] - 2000.0}{100}$$
$$= \frac{E_i[diasjulianos] - 2451545.0}{36525}$$

$$t = \frac{E_f[a\tilde{n}os] - E_i[a\tilde{n}os]}{100}$$
$$= \frac{E_f[diasjulianos] - E_i[diasjulianos]}{36525}$$

Fórmulas Aproximadas

$$\alpha_f = \alpha_i + (m + n \sin \alpha_i \tan \delta_i) \tau$$

 $\delta_f = \delta_i + (n \cos \alpha_i) \tau$

donde

$$\tau = \frac{E_f[a\tilde{n}os] - E_i[a\tilde{n}os]}{100}$$

$$= \frac{E_f[diasjulianos] - E_i[diasjulianos]}{36525}$$

$$m = 4612.4362'' + 2.79312''T - 0.000278''T^{2}$$

$$n = 2004.3109'' - 0.85330''T - 0.000217''T^{2}$$

con

$$T = \frac{E_i[a\tilde{n}os] - 2000.0}{100}$$
$$= \frac{E_i[diasjulianos] - 2451545.0}{36525}$$